Willkommen Welcome Bienvenue

Materials Science & Technology

Thin film solar cell characterization by electron beam induced current and time resolved photoluminescence

Benjamin Bissig EMPA - Laboratory for Thin Films and Photovoltaics Group leaders: Ayodhya Tiwari, Stephan Buecheler

14 January 2016

Outline

Electron beam induced current (EBIC):

- Principle & information content
- Experimental setup
- Limitations and artefacts
- Examples
- References

Time resolved photo luminescence (TRPL)

- Principle & information content
- Experimental setup
- Limitations and artefacts
- Examples
- References

Conclusion

EBIC Cross section EBIC: priniciple & information

Collection function f(x) – a property of TFSC device:

EBIC attempts to access f(x):

EBIC Cross section EBIC: priniciple & information

EBIC:

- simulatenous recording of SE and induced current
- Typical BIC curret ~ I_{ini}*E_b/E_a
- Convolutes generation g(x) and collection function f(x)

EBIC Experimental procedure:

- ✓ cleaving... (sample age!)
- ✓ contacting: In wires & Ag paint on Ni/Al contact
- ✓ mounting

- multi line feedthrough
- mechanical bridge
- rotation stage

✓ SEM

 \checkmark amplifier \rightarrow digitizer (commercial or quick&dirty: use SEM digitizer)

EBIC Limitations & Artefacts

Lateral resolution: beam energy ~ generation volume

Injection current

EBIC Limitations & Artefacts

Shunt resistance: absolute comparison of different samples

Similar R_p or rescaling necessary for direct signal comparison

Surface & Morphology

Focused ion beam polish can help, however:

- Ga ions, unknown effect on absorber
- Decreased R_p observed

EBIC Examples

Enhanced collection in Cu(Zn,Sn)(S,Se)₂

CdS indifussion into granular kesterite leads to enhanced collection.

2015, Werner, ACS Mat & Interf. DOI: 10.1021/acsami.5b02435

EBIC References

Textbook introduction:

• 1998, Reimer, Springer-Berlin, "Scanning electron microscopy", ISBN 978-3-642-08372-3

Fundamental EBIC theory:

- 1982, Leamy, JAP 53, "Charge collection scanning electron microscopy"
- 1983, Donalto, JAP 54, "Theory of beam induced current characterization..."

Chalcogenide related:

Artefacts (energy, current, surface):

- 2009, Kniese, TSF 517, "Evaluation of electron beam...."
- 2013, Nichterwitz, JAP 114, "Numerical simulaton of cross section electron..."
- 2000, Rechid, TSF 361-362, "Characterising superstrate CIS solar cells with..."

Case studies:

Combination with EBSD:

- 2011, Abou-Ras, SolEnMat&SolCells 1452-1462, "Analysis of CIGS thin film ..." Effect of GB:
- 2014, Kavalakkatt, JAP 115, "Electron beam induced current at absorber back.."
 Diffusion length from top-view EBIC:
- 2010, Brown, APL 96, "Determination of the minority carrier diffusion length..."

Outline

Electron beam induced current (EBIC):

- Principle & information content
- Experimental setup
- Limitations and artefacts
- Examples
- References

Time resolved photo luminescence (TRPL)

- Principle & information content
- Experimental setup
- Limitations and artefacts
- Examples
- References

Conclusion

TRPL Priniciple & information

i) Excess carrier injection $\Delta n(t = 0)$ (e.g. laser pulse)

ii) Time resolved detection of luminescent recombination signal L(t)

From Shockley read hall statistics and under low injection

Decay timescale of luminescence should reflect minority carrier «lifetime».

TRPL Methodology – time correlated single photon counting*

TRPL Non idealities – Non linear transients

• ... due high injection density:

low injection ($\Delta n < p_0$): $\dot{\Delta n} \sim -\frac{\Delta n}{\tau_n}$

high injection ($\Delta n < p_0$): $\Delta n \sim -\Delta n^2$

- ...due trapping, junctions, surface effects, introducing non trivial dynamics!!
- Sample bleaching and aging additionally effect the transients

TRPL Predictive power of TRPL

FIG. 2. TRPL figure of merit (y-axis) as measured on bare absorber versus completed-device efficiency (x-axis), for excitation with (a) 670-nm and (b) 905-nm laser. Line is least-squares linear fit to data, with the gray dashed lines showing 90% prediction intervals.

- Statistically, TRPL lifetime* is a predictive parameter for the device efficiency
- More difficult for one single device due:
 - Surfaces
 - Gradings
 - Shunts
 - ... (see Repins, Rev. Sci. Instr. 86, 013907, 2015.)

EBIC Examples

DOI: 10.1038

EMP

TRPL References

Textbooks on semiconductor recombination:

 Dieter K. Schroder, Semiconductor Material and Device Characterization, Chapter 5 "Defects", John Wiley & Sons, Inc., 2006.

TRPL techniques:

 Wolfgang Becker, Advanced Time-Correlated Single Photon Counting Techniques, ISBN 978-3-540-28882-4

Understanding curved transients:

- M. Maiberg, Theoretical study of time-resolved luminescence in semiconductors. I. Decay from the steady state, JAP 116, 2014.
- M. Maiberg, Theoretical study of time-resolved luminescence in semiconductors. II. Pulsed exciation, JAP 116, 2014.
- M. Maiberg, Theoretical study of time-resolved luminescence in semiconductors. III. Trap states in the bandgap, JAP 118, 2015.

...similar for CdTe

 A. Kanevce, The role of drift, diffusion, and recombination in timeresolved photoluminescence of CdTe solar cells determined through numerical simulation, PiP, 2013.

One illustrative case study on CIGS:

• W. Metzger, Long lifetimes in high efficency CIGS solar cells, APL 93, 2008.

On the predictive power of TRPL (i.e. Device efficiency):

Repins, Fiber fed time resolved PL for reduced process feedback time on thin film PV, Rev. Sci. Instr. 86, 013907, 2015.

Conclusion

- EBIC and TRPL allow to **probe minority carrier recombination** processes:
 - EBIC offers sub µm resolution on carrier collection properties
 - TRPL is a highly sensitive probe for sources of non radiative recombination and minority carrier dynamics
- To avoid artefacts, both techniques require precisely controlled probing conditions, especially the injection level
- Both are affected by fields, junctions, surfaces... which can make straightforward interpretation difficult but allows investigations of respective phenomena
- TRPL provides a **statistically significant predictor** for device efficiency

TRPL Other effects

TRPL More details

- i) (instantaneous) excess carrier injection (e.g. laser pulse)
- ii) time resolved detection of luminescent recombination signal L(t)

 $\log(L(t)) \propto \log(\Delta n(t)) \propto const - t(\tau_n)$

Linear decay timescale on log-plot should reflect minority carrier «lifetime».

TRPL Experimental procedure

TRPL Non idealities – Non linear transients

• ... due high injection density:

FIG. 6. TRL-transients for $N_d = 10^{15} \text{ cm}^{-3}$ and different n_{γ} . The solid lines represent simulated data, the dots represent approximated data.

...due trapping, junctions, surface effects...

Radiative recombination: Band-band recombination

$$p = p_0 + \Delta p$$
$$n = n_0 + \Delta n$$
$$\Delta n = \Delta p$$

$$R_{rad} = B(np - n_0p_0)$$

$$R_{rad} = \underbrace{B(n_0 + p_0)\Delta n}_{"excess e-p \ finds \ host} + \underbrace{B\Delta n^2}_{p-e"} + \underbrace{B\Delta n^2}_{"excess \ e-p \ finds \ excess \ p-e"}$$

2 level model

$$\frac{dn}{dt} = -C_e + E_e + G - R_{rad}$$
$$\frac{dn_t}{dt} = C_e - E_e - C_p + E_p$$
$$\frac{dp}{dt} = -C_p + E_p + G - R_{rad}$$

Model: Defect recombination

$$C_e = n (N_t - n_t) \sigma_n v_t$$

$$E_e = n_t N_C e^{-(EC - Ed)/kT} \sigma_n v_t$$

$$C_p = p n_t \sigma_p v_t$$

$$E_p = (N_t - n_t) N_V e^{-(ET - EV)/kT} \sigma_p v_t$$

- dynamic trap XS =! equilibrium trap XS
- ready to simulate!
- where is SRH?

Link to Shockley-Read-Hall expression:

recombination event <-> net electron capture on defect (steady state)

 $R_{SRH} = \frac{C_e - E_e}{C_e}$ $C_e = n (N_t - n_t) \sigma_n v_t$ $E_e = n_t N_C e^{-(EC - ET)/kT} \sigma_n v_t$

- find defect occupation
- assume steady state (<u>not therm eq</u>.)*: Ce-Ee=Cp-Ep

$$\rightarrow n_t = N_t f_t = \frac{C_n n + C_p p}{C_n (n + n^*) + C_p (p + p^*)}$$

$$R_{SRH} = \frac{pn - p_0 n_0}{\tau_p (n + n^*) + \tau_n (p + p^*)}$$
$$n *= N_C e^{-(EC - ET)/kT}$$