

Identification of degradation and manufacturing issues using multiparameter mapping of organic solar cells

Fernando Castro

fernando.castro@npl.co.uk

Advanced Characterization Methods for PV – 14th January 2016

Agenda

- Short introduction to NPL
- Challenges for organic solar cells
- Why mapping at different scales is important?

 Examples
 Anoscale photocurrent map Nanoscale multiparameter
 Microscale PL, Raman, Photocurrent In-situ photocurrent mapping

Final remarks

National Physical Laboratory - UK

- UK's metrology institute established in 1900
- World-leading National Measurement Institute (Top 3 among ~100)
- 650 staff, 450 Graduate/PhD scientists
 multidisciplinary

Photovoltaics at NPL

Stability (in-situ characterisation)

Novel in-situ characterisation & accelerated tests

Standardisation

Measurement protocols International Round Robins

- Mechanical Flexibility / Weight reduction (e.g. 0.5 Kg/m²)
- Design Flexibility (color, transparency, shape...)
- Low environmental burden

Image from Heliatek

Image from Heliatek

Recent examples from OPV industry

National Physical Laboratory

JIS C 8938

Environmental and endurance test methods for amorphous solar cell modules (corresponding to IEC 68-2-2, IEC 68-2-21, IEC 68-2-52)

Tests	Relative Reduction in PCE = (PCE _{Initial} -PCE _{after})/ PCE _{Initial}
(B-1) Dry heat test 85°C, 1000 hours	3%
(B-2) Damp heat test 85°C, 85%RH, 1000 hours	0%
(A-1) Thermal cycling test 90°C ←→ -40°C, 200 cycles	4%
(A-2) Temperature/humidity cycling test 85°C 85%RH ←→-40°C, 10 cycles	2%
(A-5) Light soaking test 255 W/m² (300~700 nm), 63°C, 500 hours	9.5%

Concrete façade

Glass, steel, aluminium

Glass car roof

BELECTRIC[®]

TOSHIBA

Leading Innovation >>>

African Union building 445 Belectric OPV solar modules installed in 5 days!

Mechanically stable Organic Solar Cells

Eight19

Module was constantly illuminated at 10% of 1 sun intensity (100 W/m²)

Current-voltage curves were measured in-situ after each bend. Bend radius down to 25 mm.

OPV module fabricated by Eight19 Ltd and characterised at NPL

Co-funded by the European Union under grant agreement n° 314068

OPV is not a single technology!

Hundreds of possible active layer materials Different stack configurations (regular – inverted) Numerous module design options Many different deposition methods, substrates, interlayer materials... Companies use proprietary materials

Key issues:

- Defect characterisation in multiple scales
- Identification of degradation mechanisms

Example 1a

Photoconductive-AFM

Nicholson and Castro, Nanotechnology **21** (2010) 492001 (review) Tsoi et al. Energy Environ. Sci., **4** (2011) 3646

Photoconductive-AFM data on operating organic solar cell

Topography

National Physical Laboratory

Photocurrent

30 pA

-30 pA

0 nm

18 nm

Topography: Very flat (RMS roughness ~ 2 nm) Nanowires are embedded in the 80 nm thick film

Tsoi, Castro et al. Energy Environ. Sci., 4 (2011) 3646

Real photocurrent

Surface and subsurface signal can be decoupled

Tsoi Tsoi, Castro et al. Energy Environ. Sci., **4** (2011) 3646 Blakesley and Castro, Phys Rev B **91** (2015) 144202 Example 2

What about samples where features are not obvious?

Centre for Carbon

Measuremer

Can we get chemical information with nanoscale resolution?

Tip-enhanced optical spectroscopy (Raman, Photoluminescence)

- Laser excites plasmon resonance
- Enhanced electromagnetic field close to the AFM tip

Naresh et al, submitted (2015)

Tip-enhanced optical spectroscopy (TEOS)

Si TPT-BT

ICMA

A: Raman peaks from polymer B: Photoluminescence from polymer C: Photoluminescence from ICMA

Topography

Green: Polymer Raman Red: Fullerene PL

Naresh et al, submitted (2015)

First simultaneous PC-AFM and TEOS **NPL**

Polymer Raman

Indication of measurement resolution

Larger area multi-parameter mapping

Provides information about

Processing issues Resistive losses over large areas Degradation

Example of methods:

Photoluminescence

Raman

Example 2

Photocurrent (LBIC)

Transmittance

Electroluminescence

Thermography

Can be combined in one experiment.

Example 2a: Manufacturing issues

Perovskite Solar Cell

Device Structure: glass/FTO/TiO2/Mixed Halide Perovksite/SpiroOMeTAD/Gold

micro PL/Raman Mapping

PL/Raman mapping can identify micrometre-scale defects: here the strong Raman signal from Spiro and low Perovskite PL suggest a hole in the perovskite layer capped with Spiro.

Example 2b: Degradation issues

NPL portable environmental chamber NPL

- Simulates encapsulation environment
- Independent control of oxygen and humidity (selective stress testing)
- Automated testing and data acquisition with programmable environments
- *in-situ* characterisation using imaging techniques, μ-Raman, μ-PL, EQE, TPV/TPC etc.

Parameter	Range	Accuracy
Oxygen concentration	0.5 ppm to 21 % (>5 orders of magnitude)	± 10 % traceable
Humidity	1.0 ppm to ~10 % R.H. (>3 orders of magnitude)	± 20 % traceable
Temperature	+ 20 ° C to + 50 ° C	± 1 ° C
Light	AM 1.5 AAA Xe lamp solar simulator, traceable	
Balance gas	99.9999 % Nitrogen	

Centre for

easuremer

Technology Applied

Carbo

۲ (mm)

active area = 1 cm^2

Photocurrent map (MoO₃) NPL

Final summary

- Still growing interest in OPVs. Key issues: defect characterisation in multiple scales / identification of degradation mechanisms
- Mapping/Imaging is key to provide insight into manufacturing and degradation issues
- Single methods are very limited. Combination of methods is preferred.
- Multiparameter (simultaneous) or in-situ characterisation avoids possible unwanted contamination/degradation between tests

Acknowledgements

Imperial College London

Dr Ji-Seon Kim Prof Jenny Nelson Prof James Durrant

SPECIFC

Jenny Baker

NPL team

Dr James Blakesley Dr George Dibb Dr Sebastian Wood

The CHEETAH project has received funding from the European Union Seventh Framework Programme (FP7/2007- 2013) under grant agreement n° 609788

www.cheetah-project.eu

Department for Business Innovation & Skills

www.treasores.eu