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°* Context — moving towards more stringent material requirements
°* Oxygen-related defects in silicon - areservoir of lifetime killers
° Introduction to OxyMap

°* Examples of applications

°* Conclusion and outlook



SUMMARY

Context — moving towards more stringent material requirements



CONTEXT (1/2)

* Higher efficiency cell technologies are entering the market
* Mostly on monocrystalline Czochralski wafers
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CONTEXT (2/2)

°* Require very high carrier lifetimes (t) + less tolerance to
medium/low quality wafers
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“Only two third of the Cz-Si wafers are
defect-free. 29% exhibit oxygen thermal
donors and 4% severe oxygen
precipitation”

Fraunhofer ISE (PV Mag. 2012)

Estimated 10-20% of shipped wafers affected
by oxygen cluster rings with cells below
efficiency specs.
rings 1-2% abs. efficiency drops
discs 4-6% abs. efficiency drops”

ECN/Yingli (PVSEC 2015)




SUMMARY

Introduction to OxyMap



[TD] cm?3

OXYMAP OVERVIEW

* OxyMap relies on the change in resistivity (p) during an intentional
formation of Thermal Donors

Small O-related clusters formed at around 450°C

Double donors = p shift

Unwanted =» Can be annihilated above 600°C

°* TD generation rate at 450°C highly dependent on [O]
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OXYMAP OVERVIEW

All resistivity (p) measurements performed using non-contact Eddy currents
- OxyMap is non-destructive and independent of wafer morphology (thickness or surface state)
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* Linescans performed on the diagonal of the solar wafer ~4
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FULL INGOT CHARACTERIZATION

°* Example : Reconstruction from 25 wafers scanned through an ingot

* Process control for routine products
* Optimized feedback for R&D purposes
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COMPARISON WITH EXISTING TECHNIQUES

Fourier Transform InfraRed spectroscopy (FTIR) routinely applied
on thick polished slices (application to solar wafers tricky)
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OXYMAP OVERVIEW
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THERMAL HISTORY : DEFINITION

* [O;] =driving force for O-defects formation

°* Thermal history : T=f(t), governs the amplitude of formation
* Larger thermal histories = larger [defects]
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RECONSTRUCTION OF THE INGOT THERMAL HISTORY

° Pulling process issues can be quickly identified
* valuable feedback for R&D purposes (hotzone optimizations)
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OXYMAP OVERVIEW
P1 > ’ P) . P3

L — |

Intentional Dopant
[T D] as-grown P

ﬁ ~"| concentration ([B], [P]...)
/ |

Thermal History Index o
(linked to wafer position) Cell LID predictions ]

For boron-doped Cz

]
Jo-1NesS
%

V INSTITUT NATIONAL
DE LENERGIE SOLAIRE

| 16




LEVEL DUE TO THE BORON-OXYGEN COMPLEXES

PREDICTION OF LIGHT-INDUCED DEGRATION AT CELL

* Degradation amplitude = strong function of [B] and [O;] [1]

* Induced cell LID losses (AV,., Ad,., AFF, AEfficiency) modeled with PC1D
and adjusted to CEA experimental results obtained on BSF and PERC cells

Models for AI-BSF and PERC architectures Typical results obtained
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LID PREDICTION — COMPARISON TO INDUSTRIAL DATA

°* OxyMap predictions validated within uncertainty by comparison
with industrial LID losses measurements.
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* Potential interest from:

* wafer and cell manufacturers to identify high-LID wafers e

* module manufacturers to improve the cell matching (after cell LID) .
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OXYMAP OVERVIEW
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!‘!atsc': CARRIER LIFETIME LIMITED BY AS-GROWN TD

* High [TD,g 4r0wn] IS Incompatible with high bulk carrier lifetime
* Critical for low-T cell processes for which TD are not suppressed
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Sow>  AET e

AN
........... a . .
= 3 The R&D version now available
% | from AET Solar Tech, France
1 9 ==
i
Non destructive J No restri_ction on v No restriction on wafer J
wafer thickness surface roughness

Characterization of O-related defects / Detection of defective wafers / Feedback for ingot and cell R&D dvpts



http://aetsolartech.com/oxymap/

Thanks for your
attention!

Commissariat a I'énergie atomique et aux énergies alternatives
150 avenue du lac Léman | 73375 Le Bourget-du-Lac

Etablissement public & caractére industriel et commercial | RCS Paris B 775 685 019




ANALYSING THE SORTING STRATEGIES OF WAFERS

[O] average (ppma)

Better quality check of incoming wafers that reveals the sorting

strategy of wafer providers
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AET )

Applicable on thin wafers

FTIR signal
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PROCESS OVERVIEW

Can measured wafers be transformed into efficient cells ?
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EFFICIENCY VARIATIONS VS INGOT HEIGHT TODAY

* Large variations of stabilized n observed along the ingot height
(both p and n-type Si) _—

1.01
n type Cz-Si ingot
1
“Only two third of the Cz-Si wafers are >
defect-free. 29% exhibit oxygen thermal e 0.99 T
donors and 4% severe oxygen -%
precipitation” % 0.08 . B
Fraunhofer ISE (??7?) o
& o091
£
“Estimated 10-20% of shipped wafers 5 096y M n-type HET
affected by rings -> cells below efficiency 4 # n-type PERT diffused
specs. “rings” 1-2%, “discs” 4-6% abs. eff” 095 1 n-type PERT implanted
‘Recombination active defects in ring
shape related to oxygen cluster 0.94 T ' ' '
formation during ingot growth” 0 20 4‘; . 600 80 100
ECN/Yingli (PVSEC 2015) Ingot fraction (%)

B. Martel et al., NPV Workshop 2015

Already today, O-related defects do not allow to leverage efficiency improvements
permitted by high efficiency cell processes =» Monitoring is required




HOW TO LEVERAGE LINESCANS
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mar SELECTION OF WAFERS TO BE USED FOR PROCESS OPTIMIZATION

Very large and unexpected resistivity changes
after high T steps can occur due to high [TD];,
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Can strongly complicate interpretation
of process development results !

Quick and accurate access to the resistivity before and after high T
step (>600°C) is essential for cell process developments




CONCLUSIONS

" Alarge set of accurate data can be obtained to help material qualification
along the value chain

» Data over the diagonal of the wafer
 [O] and spatial homogeneity
d Initial resistivity and resistivity after high T process steps
d [TD ] and spatial homogeneity

as-grown

» Additional features:

1 Position of the wafer in the original ingot
 Detection of low-efficiency wafers

(J Predictions of the cell LID losses

 Estimation of the carrier lifetime limited by TD

(d Feedback on crystallization issues for crystal growers

Non destructive J No restriction on J No restriction on wafer J
wafer thickness surface roughness
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CARRIER LIFETIME LIMITED BY AS-GROWN TD

* High concentrations of as-grown TD is incompatible with high bulk
carrier lifetime

* From the measured [TD,,], OxyMap predicts the carrier lifetime limited by TD
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