

Ceatech

CHARACTERIZATION OF OXYGEN-RELATED DEFECTS IN CZOCHRALSKI SILICON WAFERS

CHEETAH Characterization Workshop 14-01-2015 J. Veirman, B. Martel, G. Raymond, N. Enjalbert, S. Dubois

- Context moving towards more stringent material requirements
- Oxygen-related defects in silicon a reservoir of lifetime killers
- Introduction to OxyMap
- Examples of applications
- Conclusion and outlook

• Context – moving towards more stringent material requirements

- Oxygen-related defects in silicon a reservoir of lifetime killers
- Introduction to OxyMap
- Examples of applications
- Conclusion and outlook

CONTEXT (1/2)

liten

Ceatech

- Higher efficiency cell technologies are entering the market
 - Mostly on monocrystalline Czochralski wafers

ITRPV expected mass production efficiency by 2025

 Require very high carrier lifetimes (τ) + less tolerance to medium/low quality wafers

From R. Kopecek and J. Libal, "Switch from p to n", PV magazine, 2012.

Other defects also concerned (Vacancy-O complexes, Nitrogen-O complexes,

• Need to monitor [O_i] and O-related defects!

- Context moving towards more stringent material requirements
- Oxygen-related defects in silicon a reservoir of lifetime killers
- Introduction to OxyMap
- Examples of applications
- Conclusion and outlook

- OxyMap relies on the change in resistivity (ρ) during an intentional formation of Thermal Donors
 - Small O-related clusters formed at around 450°C
 - Double donors $\rightarrow \rho$ shift
 - Unwanted → Can be annihilated above 600°C
- TD generation rate at 450°C highly dependent on [O_i]

Liten OXYMAP OVERVIEW

All resistivity (ρ) measurements performed using non-contact Eddy currents \rightarrow OxyMap is **non-destructive** and **independent of wafer morphology** (thickness or surface state)

[OI] VARIATIONS MEASUREMENTS

• Linescans performed on the diagonal of the solar wafer

 Due to the radial symmetry of the O-related defects distribution, linescans along the wafer diagonal are enough to thoroughly characterize a wafer

Liten
CERLEFULL INGOT CHARACTERIZATION

• Example : Reconstruction from 25 wafers scanned through an ingot

- Process control for routine products
- Optimized feedback for R&D purposes

COMPARISON WITH EXISTING TECHNIQUES

 Fourier Transform InfraRed spectroscopy (FTIR) routinely applied on thick polished slices (application to solar wafers tricky)

Various samples used for the comparison

- 2 mm thick p and n type samples
- Resistivity 0.5 10 Ω.cm

liten

(22 tech

- Top, middle and bottom ingots (different thermal histories)
- Different Cz pulling parameters (seed and crucible rotation speeds, pulling speed)
- [O_i] covering the whole Cz range

Very good agreement between OxyMap and FTIR measurements Confirmed by tests made for industrial partners

- [O_i] = driving force for O-defects formation
- Thermal history : T=f(t), governs the amplitude of formation
 - Larger thermal histories = larger [defects]

Thermal history strong function of height

RECONSTRUCTION OF THE INGOT THERMAL HISTORY

Pulling process issues can be quickly identified

liten

Ceatech

• valuable feedback for R&D purposes (hotzone optimizations)

PREDICTION OF LIGHT-INDUCED DEGRATION AT CELL LEVEL DUE TO THE BORON-OXYGEN COMPLEXES

- Degradation amplitude = strong function of [B] and [O_i] [1]
- Induced cell LID losses (ΔV_{oc} , ΔJ_{sc} , ΔFF , $\Delta Efficiency$) modeled with PC1D and adjusted to CEA experimental results obtained on BSF and PERC cells

[1] K. Bothe et al., Prog. Photovolt: Res. Appl. 2005; 13:287–296

liten Ceatech

LID PREDICTION – COMPARISON TO INDUSTRIAL DATA

• OxyMap predictions validated within uncertainty by comparison with industrial LID losses measurements.

• Potential interest from:

liten

(22 tech

- wafer and cell manufacturers to identify high-LID wafers
- module manufacturers to improve the cell matching (after cell LID)

18

CARRIER LIFETIME LIMITED BY AS-GROWN TD

liten

(22 tech

- High [TD_{as-grown}] is incompatible with high bulk carrier lifetime
 - Critical for low-T cell processes for which TD are not suppressed

The R&D version now available from AET Solar Tech, France

http://aetsolartech.com/oxymap/

Non destructive

No restriction on wafer thickness

No restriction on wafer surface roughness

Characterization of O-related defects / Detection of defective wafers / Feedback for ingot and cell R&D dvpts

Thanks for your attention!

Commissariat à l'énergie atomique et aux énergies alternatives 150 avenue du lac Léman | 73375 Le Bourget-du-Lac www-liten.cea.fr

Établissement public à caractère industriel et commercial | RCS Paris B 775 685 019

ANALYSING THE SORTING STRATEGIES OF WAFERS

 Better quality check of incoming wafers that reveals the sorting strategy of wafer providers

Applicable on thin wafers

PROCESS OVERVIEW

liten

Ceatech

Can measured wafers be transformed into efficient cells ?

No detectable impact of the measurement on the final cells efficiencies noticed for AIBSF process

DE L'ENE

es

EFFICIENCY VARIATIONS VS INGOT HEIGHT TODAY

 Large variations of stabilized η observed along the ingot height (both p and n-type Si)

"Only two third of the Cz-Si wafers are defect-free. 29% exhibit oxygen thermal donors and 4% severe oxygen precipitation" Fraunhofer ISE (???)

liten

(22 tech

"Estimated 10-20% of shipped wafers affected by rings -> cells below efficiency specs. "rings" 1-2%, "discs" 4-6% abs. eff" "Recombination active defects in ring shape related to oxygen cluster formation during ingot growth" ECN/Yingli (PVSEC 2015)

B. Martel et al., NPV Workshop 2015

Already today, O-related defects do not allow to leverage efficiency improvements permitted by high efficiency cell processes → Monitoring is required

HOW TO LEVERAGE LINESCANS

SmarteR SELECTION OF WAFERS TO BE USED FOR PROCESS OPTIMIZATION

Quick and accurate access to the resistivity before and after high T step (>600°C) is essential for cell process developments

CONCLUSIONS

A large set of accurate data can be obtained to help material qualification along the value chain

Data over the diagonal of the wafer

- **[O**_i**]** and spatial homogeneity
- Initial resistivity and resistivity after high T process steps
 - [TD as-grown] and spatial homogeneity

> Additional features:

- **Position of the wafer** in the original ingot
- **Detection of low-efficiency wafers**
- Predictions of the cell LID losses
- Estimation of the carrier lifetime limited by TD
- Feedback on **crystallization issues** for crystal growers

Non destructive

No restriction on wafer thickness

CARRIER LIFETIME LIMITED BY AS-GROWN TD

- High concentrations of as-grown TD is incompatible with high bulk carrier lifetime
 - From the measured [TD_{ini}], OxyMap predicts the carrier lifetime limited by TD

30