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Cross section EBIC: priniciple & informationEBIC

scanning

electron 

source 

(SEM)

IBIC

Secondary 

electron

detector

Collection function f(x) – a property of TFSC device:

EBIC attempts to access f(x): 



Swiss Federal Laboratories for Materials Science and Technology 4

Cross section EBIC: priniciple & informationEBIC
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𝐸𝐵𝐼𝐶(𝑥) =  0
𝑡
𝑓 𝑥′ ∗ 𝑔 𝑥, 𝑥′ 𝑑𝑥′,

EBIC:

 simulatenous recording of SE and induced current

 Typical BIC curret ~ Iinj*Eb/Eg

 Convolutes generation- g(x) and collection function f(x)
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Experimental procedure:EBIC

 cleaving… (sample age!)

 contacting: In wires & Ag paint on Ni/Al contact

 mounting

 SEM

 amplifier  digitizer (commercial or quick&dirty: use SEM digitizer)

TCO

Ni/Al

 multi line feedthrough

 mechanical bridge

 rotation stage
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Limitations & ArtefactsEBIC

 Lateral resolution: beam energy ~ generation volume

 Injection current
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Limitations & ArtefactsEBIC

 Shunt resistance: absolute comparison of different samples

 Surface & Morphology

𝐼𝑎𝑚𝑝

𝐼𝑔𝑒𝑛
=

1

1 +
𝑅𝑐𝑜𝑛𝑡 + 𝑅𝑎𝑚𝑝

𝑅𝑝
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Rcont

device

2 µm

Disconnected grain

Similar Rp or rescaling necessary 

for direct signal comparison

Focused ion beam polish can help, 

however:

 Ga ions, unknown effect on absorber

 Decreased Rp observed
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ExamplesEBIC

Cu doping of CdTe

2013, Kranz, Nature Comm., 4:2306

Cu doping increases

doping and leads to pn

junction formation. 

2015, Werner, ACS Mat & Interf. 

DOI: 10.1021/acsami.5b02435

CdS indifussion into

granular kesterite leads

to enhanced collection.

Enhanced collection in Cu(Zn,Sn)(S,Se)2  
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ReferencesEBIC

Textbook introduction:

 1998, Reimer, Springer-Berlin, "Scanning electron microscopy", ISBN 978-3-642-08372-3

Fundamental EBIC theory:

 1982, Leamy, JAP 53, "Charge collection scanning electron microscopy"

 1983, Donalto, JAP 54, "Theory of beam induced current characterization…"

Chalcogenide related:

Artefacts (energy, current, surface):

 2009, Kniese, TSF 517, "Evaluation of electron beam…."

 2013, Nichterwitz, JAP 114, "Numerical simulaton of cross section electron…"

 2000, Rechid, TSF 361-362, "Characterising superstrate CIS solar cells with…"

Case studies:

Combination with EBSD:

 2011, Abou-Ras, SolEnMat&SolCells 1452-1462, "Analysis of CIGS thin film …"

Effect of GB:

 2014, Kavalakkatt, JAP 115, "Electron beam induced current at absorber back.."

Diffusion length from top-view EBIC:

 2010, Brown, APL 96, "Determination of the minority carrier diffusion length…"
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Priniciple & informationTRPL

*neglecting Auger, after instantaneous injection of ∆𝑛

i) Excess carrier injection ∆𝑛 𝑡 = 0 (e.g. laser pulse)

ii) Time resolved detection of luminescent recombination signal L(t)

Decay timescale of luminescence should reflect minority carrier «lifetime».

𝐿 𝑡 ∝ ∆𝑛(𝑡)

∆𝑛 𝑡 = ∆𝑛(𝑡 = 0)𝑒−𝑡/𝜏𝑛
From Shockley read hall statistics 

and under low injection
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Methodology – time correlated single photon counting*TRPL

12

lumincescence

sample

achromat

Monochr.

achromat

fast detector

(PMT)

Digitizer & PC

Excitation

 MHz pulsed

 100 ps width
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Non idealities – Non linear transientsTRPL

 ... due high injection density:

 ...due trapping, junctions, surface effects, introducing non trivial dynamics!!

 Sample bleaching and aging additionally effect the transients 
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low injection (∆𝑛 < 𝑝0):

 ∆𝑛 ~ −
∆𝑛

𝜏𝑛

high injection (∆𝑛 < 𝑝0):
 ∆𝑛 ~ − ∆𝑛2
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Predictive power of TRPLTRPL

 Statistically, TRPL lifetime* is a predictive parameter for the device efficiency

 More difficult for one single device due: 

 Surfaces

 Gradings

 Shunts

 ... (see Repins, Rev. Sci. Instr. 86, 013907, 2015.)


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* here it is a figure of merit t*Yield(t=0), measured on bare absorbers
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ExamplesEBIC

Highly efficient kesterite 11.2 %         PCBM as electron extractor on PbI2:MA Effect of bandgap grading

2015, Haass, Adv. En. Mat, 1500712 2015, Fu, Nature Comm. 

DOI: 10.1038

Improvements in absorber 

morphology are well 

reflected in lifetime.

Initial non linear decay 

is understood as fast 

extraction of generated 

carriers  compare 

extraction efficiency.

Eg grading 

leads to 

additional 

kinetics.
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Conclusion

 EBIC and TRPL allow to probe minority carrier recombination processes:

 EBIC offers sub µm resolution on carrier collection properties

 TRPL is a highly sensitive probe for sources of non radiative 

recombination and minority carrier dynamics

 To avoid artefacts, both techniques require precisely controlled probing 

conditions, especially the injection level

 Both are affected by fields, junctions, surfaces... which can make 

straightforward interpretation difficult but allows investigations of respective 

phenomena

 TRPL provides a statistically significant predictor for device efficiency
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Other effectsTRPL
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More detailsTRPL

*neglecting Auger, after instantaneous injection of ∆𝑛

i) (instantaneous) excess carrier injection (e.g. laser pulse)

ii) time resolved detection of luminescent recombination signal L(t)

Linear decay timescale on log-plot should reflect minority carrier «lifetime».

log(𝐿 𝑡 ) ∝ 𝑙𝑜𝑔(∆𝑛(𝑡)) ∝ 𝑐𝑜𝑛𝑠𝑡 − 𝑡/𝜏𝑛

∆𝑛

∆𝑛

n

p

Ce Ee

Ep Cp

Rrad G

𝑁𝑡... density

𝜎 ... cross-section

3 level model:

𝑅𝑆𝑅𝐻 =
𝑝𝑛−𝑝0𝑛0

𝜏𝑝(𝑛+𝑛
∗)+𝜏𝑛(𝑝+𝑝

∗)
, 𝜏𝑛 ∝ 1/𝜎𝑁𝑡

𝑅𝑟𝑎𝑑= 𝐵 𝑛𝑝 − 𝑛0𝑝0

∆𝑛 𝑡 = ∆𝑛0𝑒
−𝑡/𝜏𝑛

 For p-type and low injection ∆𝑛 << p0

Analytical expressions for excess carrier 

recombination dynamics*:

 ∆𝑛 = −(𝑅𝑟𝑎𝑑 + 𝑅𝑆𝑅𝐻)

 ∆𝑛 ~ −𝑅𝑆𝑅𝐻= −
∆𝑛

𝜏𝑛
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Experimental procedureTRPL
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lumincescence

sample
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achromat
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Excitation

 MHz pulsed

 100 ps width

Time correlated single 

photon counting (TCSPC)
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Non idealities – Non linear transientsTRPL

 ... due high injection density:

 ...due trapping, junctions, surface effects... 
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𝑝 = 𝑝0 + ∆𝑝
𝑛 = 𝑛0 + ∆𝑛
∆𝑛 = ∆𝑝

𝑅𝑟𝑎𝑑 = 𝐵 𝑛𝑝 − 𝑛0𝑝0

𝑅𝑟𝑎𝑑 = 𝐵 𝑛0 + 𝑝0 ∆𝑛
"𝑒𝑥𝑐𝑒𝑠𝑠 𝑒−𝑝 𝑓𝑖𝑛𝑑𝑠 ℎ𝑜𝑠𝑡 𝑝−𝑒"

+ 𝐵∆𝑛2

"𝑒𝑥𝑐𝑒𝑠𝑠 𝑒−𝑝 𝑓𝑖𝑛𝑑𝑠 𝑒𝑥𝑐𝑒𝑠𝑠 𝑝−𝑒"

Radiative recombination: Band-band 

recombination
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2 level model

𝑑𝑛

𝑑𝑡
= −𝐶𝑒 + 𝐸𝑒 + 𝐺 − 𝑅𝑟𝑎𝑑

𝑑𝑛𝑡
𝑑𝑡

= 𝐶𝑒 − 𝐸𝑒 − 𝐶𝑝 + 𝐸𝑝

𝑑𝑝

𝑑𝑡
= −𝐶𝑝 + 𝐸𝑝 + 𝐺 − 𝑅𝑟𝑎𝑑

∆𝑛

∆𝑛

n

p

Rrad

𝑁𝑡... density

𝜎 ... cross-section
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𝐶𝑒 = 𝑛 𝑁𝑡 − 𝑛𝑡 𝜎𝑛 𝑣𝑡

𝐸𝑒 = 𝑛𝑡 𝑁𝐶 𝑒−(𝐸𝐶−𝐸𝑑)/𝑘𝑇 𝜎𝑛 𝑣𝑡

𝐶𝑝 = 𝑝 𝑛𝑡 𝜎𝑝 𝑣𝑡

𝐸𝑝 = 𝑁𝑡 − 𝑛𝑡 𝑁𝑉 𝑒−(𝐸𝑇−𝐸𝑉)/𝑘𝑇 𝜎𝑝 𝑣𝑡

 dynamic trap XS =! equilibrium trap XS

 ready to simulate!

 where is SRH?

n

p

nt

Ce Ee

Ep Cp R G

Model: Defect recombination
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Link to Shockley-Read-Hall expression:

 recombination event <-> net electron capture on defect (steady state)

𝑅𝑆𝑅𝐻 = 𝐶𝑒 − 𝐸𝑒
𝐶𝑒 = 𝑛 𝑁𝑡 − 𝑛𝑡 𝜎𝑛 𝑣𝑡
𝐸𝑒 = 𝑛𝑡 𝑁𝐶 𝑒−(𝐸𝐶−𝐸𝑇)/𝑘𝑇 𝜎𝑛 𝑣𝑡

 find defect occupation

 assume steady state (not therm eq.)*: Ce-Ee=Cp-Ep

→ 𝑛𝑡= 𝑁𝑡𝑓𝑡 =
𝐶𝑛𝑛 + 𝐶𝑝𝑝

𝐶𝑛(𝑛 + 𝑛∗) + 𝐶𝑝(𝑝 + 𝑝∗)

𝑹𝑺𝑹𝑯 =
𝒑𝒏 − 𝒑𝟎𝒏𝟎

𝝉𝒑(𝒏 + 𝒏∗) + 𝝉𝒏(𝒑 + 𝒑∗)

𝑛 ∗= 𝑁𝐶 𝑒−(𝐸𝐶−𝐸𝑇)/𝑘𝑇


