Joint Research Centre

the European Commission's in-house science service

×

X

Serving society Stimulating innovation Supporting legislation

Precision PV Performance Assessment at ESTI

N. Taylor, E. Dunlop, H. Muellejans, T. Sample, T. Huld, R. Kenny, E. Salis, W. Zaaiman Cheetah Workshop, Freiburg, 14 January 2016

Contents

- ESTI
- Uncertainty in power measurement
- Multi-junction flat plate modules
- Energy rating
- What ESTI can do for you

- Improve PV performance measurement methods and standards (power, energy yield, reliability and lifetime)
- Enabler for European PV research and innovation (calibrations, benchmarking, workshops/training, lab access, EUPVSEC technical programme coordination)
- SET-Plan PV technology and market assessment

ESTI Facilities

Power Measurement

- Large area (2 m x 2 m) steady state simulator
- Flash simulator (3 m x 3 m, 10 ms)
- Long flash simulator (2m x 2 m, 80 ms)
- Steady state simulator for up to 12 cm x 12 cm
- High intensity flash simulator
- Outdoor/natural sunlight set-up (2m x 2m)

Spectral Response

- Pasan flash system (2 m x 2m)
- Oriel system (cells, modules)

Environment Conditioning

- Light soaking/stabilisation (with T control)
- Thermal Cycling
- Damp Heat
- Laser Lab

Energy yield

- Continuous performance measurement (I-V sweeps)
- Long term power monitoring (DC/AC)

Power (and Efficiency) Measurement Uncertainty

Classification ^a	Effic. ^b (%)	Area ^c (cm ²)	V _{oc} (V)	I _{se} (A)	FF ^d (%)	Test centre (date)
Si (crystalline)	22.9 ± 0.6	778 (da)	5.60	3.97	80.3	Sandia (9/96) ^e
Si (large crystalline)	22.4 ± 0.6	15775 (ap)	69.57	6.341 [†]	80.1	NREL (8/12)
Si (multicrystalline)	18.5 ± 0.4	14661 (ap)	38.97	9.149 ⁹	76.2	FhG-ISE (1/12)
GaAs (thin film)	24.1 ± 1.0	858.5 (ap)	10.89	2.255 ^h	84.2	NREL (11/12)
CdTe (thin-film)	17.5 ± 0.7	7021 (ap)	103.1	1.553 ⁱ	76.6	NREL (2/14)
CIGS (Cd free)	17.5 ± 0.5	808 (da)	47.6	0.408 ⁱ	72.8	AIST (6/14)
CIGS (thin-film)	15.7 ± 0.5	9703 (ap)	28.24	7.254 ^k	72.5	NREL (11/10)
a-Si/nc-Si (tandem)	12.2 ± 0.3^{i}	14322 (t)	202.1	1.261 ^j	68.8	ESTI (6/14)
Organic	8.7 ± 0.3^{m}	802 (da)	17.47	0.569 ^j	70.4	AIST (5/14)

rst Solar.	First Solar, LLC 28101 Cedar Park I Perrysburg, OH 43 www.FirstSolar.com		
ominal Pe urrent at bltage at nort Circu pen Circu aximum S ax Sourc rotection ell Type	Made in USA ower (+/-5 %) mpp nit Current it Voltage System Voltage e Circuit Fuse Class	60 W 0.97 A 62 V 1.15 A 90 V (600V UL) 1000 V (2A UL) 10 A Class II Colto	
specifications rning - Ele solar mod observe a vice. Do no	(+/- 10 %) at STC: Irad. 1/ ctrical shock hazard lule produces high vo l intstructions before at disconnect under lo	000W/m², AM 1.5, Cell T 25 °C Itages in sunlight. Read attempting installation or ad.	
Serial	Number 	Model Number FS-260	
ered by Unite 5,163; 6,037, ents; Others P	d States Patents: 5,248,349 241; 6,559,411; 6,719,848; ending.	; 5,470,397;5,536,333; and by Corresponding Foreign	

LG250516-62	
Serial No.	
Manufactured Date	120113
Standards Size	1632X986X42 m
Maximum Power (Pmax)	250 V
Power Tolerance	-0/+3 %
Maximum Power Voltage (Vmpp)	29.90 V
Maximum Power Current (Impp)	8.37 A
Open Circuit Voltage (Voc)	37.10 V
Short Circuit Current (Isc)	8.76 A
Maximum System Voltage	1,000 V
Maximum Series Fuse	15 A
Maximum Load	5400 Pa

WARNING

Refer to Installation and Operation Manual before installing, operating or servicing this unit. DO NOT connect or disconnect plug contacts while system is under load current. Failure to

Example of contributions to P_{max} **uncertainty**

Electrical: Data acquisition; Shunts; Reference cell shunt or TIA Temperature: Indicators; Measurement condition; Temperature non-uniformity Optical: Spatial non-uniformity of irradiance; Orientation; Alignment Reference Cell: Calibration; spectral mismatch; drift Fill Factor: cabling Repeatability: Measurements of device; system drift

New ESTI primary reference cell analysis

PX304C

New ESTI primary reference cell analysis

- Rigorous statistical analysis of a set of five c-Si PV reference cells used as irradiance primary references
- Lowest expanded uncertainty of 0.23% (k = 2), a factor of two below that of any single method.

Should be possible to calibrate ref cells by cheaper and faster secondary methods, with UCs ≤ primary methods.

See H. Müllejans, W. Zaaiman & E. Dunlop, Reduction of uncertainties for photovoltaic reference cells, Metrologia 52 (2015) 646–653

Multi-Junction Flat-Plate Devices

MJ flat-plate modules are likely to become common in the future as a route to obtaining higher efficiencies

Proposed IEC standards (at committee draft with vote stage)

- IEC 60904-1-1 Measurement of current-voltage characteristics of multi-junction photovoltaic devices
- IEC 60904-8-1 Measurement of spectral responsivity of multi-junction photovoltaic (PV) devices

Spectral deviation from AM1.5G (GREF)

Correction: Mismatch (MM) as defined by IEC 60904-7

 $MMF = \frac{1}{MM} = \frac{\int SR^{DUT}(\lambda) \ G^{REF}(\lambda) d(\lambda) \times \int SR^{RC}(\lambda) \ G^{meas}(\lambda) d(\lambda)}{\int SR^{DUT}(\lambda) \ G^{meas}(\lambda) d(\lambda) \times \int SR^{RC}(\lambda) \ G^{REF}(\lambda) d(\lambda)}$

DUT = Top junction

DUT = Bottom junction

MMF_{TOP}

MMFBOTTOM

Energy rating

- **Energy rating** (dimensionless) is a measure of how a module type performs in a certain climate, relative to other module types.
- **Yield prediction** (unit: kWh/year) is an estimate of the energy output of a specific PV installation.

IEC 61853 series: photovoltaic modules performance testing and energy rating

Part 1: Irradiance and temperature performance measurements and power rating (published)

- Part 2: Spectral response, incidence angle and module operating temperature measurements (Approved for FDIS)
- Part 3: Energy Rating of PV Modules (Committee Draft)
- Part 4: Standard reference climatic profiles (Committee Draft)

Module performance ratio (MPR)

Ratio of actual module energy output under a given reference climate year to the output if the module always had the efficiency measured at STC.

It can be expressed as:

 $MPR = 1000E_{tot}/(P_{stc}H_{tot})$

 H_{tot} is the total in-plane irradiation (kWh/m²)

 E_{tot} is the total module energy output during the same period (kWh)

The reference climate year is represented by a sets of hourly values of G, spectral content, wind speed and T.

MPR, all effects, c-Si

Annual average MPR, AOI and spectrally corrected, temperature & wind. c-Si modules

The research work presented was partly carried out within the EMRP ENG55 project Photoclass "Towards an energy-based parameter for photovoltaic classification". The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union.

What ESTI can do for you:

a)Calibration (fee-free) of reference devices for national laboratories and verification on request of PV technologies developed in EU programmes

- b) Collaborative research with industrial partners on new materials and/or concepts to promote European competitiveness and improved standards.
- c) Commercial calibration service for external customers, focusing on new technologies and respecting subsidiarity principles.

Stay in touch

esti.services@jrc.ec.europa.eu 🌅 😂 🚺

JRC Science Hub: ec.europa.eu/jrc

Twitter and Facebook: @EU_ScienceHub

LinkedIn: european-commission-joint-research-centre

