

Degradation and electric behavior in thin film photovoltaic devices

Marcus Rennhofer (<u>marcus.rennhofer@ait.ac.at</u>)

Content

- Photovoltaic Systems at AIT
- Characterization on cell level
- Characterization on module level
- Characterization vs. Degradation

Photovoltaic Systems at AIT

Assured quality for solar power systems and components Building-integrated photovoltaics - BIPV

Technologies for nextgeneration solar cells

1. Electro-optical Characterization on Cell Level

Comparison of different methods for optical characterisation of PV Cells and mini-modules within CHEETAH

- Electroluminescence (EL): 100% lsc and 10% lsc
- Photoluminescence (PL): NIR: 840 nm, 100W electrical power
- Photoluminescence (PL): VIS: 525 nm, 4,8 kW electrical power
- Dark lock-in infrared thermography (DLIT): 100% lsc, 5s period,

Electroluminescence 100% lsc, 10% lsc and DLIT

100% lsc

10 % Isc

DLIT scale 0-65%

DLIT scale 0-100%

EL 100% lsc

PL 840nm

Defects of cells

- 1 Microcrack
- 2 **Shunt**, low parallel resistance in the cell
- 3 Hot spot due to shunt in the cell
- 4 Electrically separated regions of the cell (no electrical contact)
- 5 Electrically separated regions of the cell operate in open circuit mode
- 6 Fingers interrupted
- 7 Interrupted fingers operate in open circuit mode
- 8 Oven imprints
- 9 Oven imprints operate in open circuit mode
- 10 Oven imprints operate in short circuit mode
- 11 Interrupted finger operates in short circuit mode
- 12 Insulation problems on the edge of the cell
- 13 Missing electrical contact

Defects of cells

- 14 **High current density** due to bad contacts someplace else
- 15 Hot contacts
- 16 Microcracks
- 17 Insulation problems on the edge of the cell
- 18 Hot spot due to soldering problem
- 19 Small shunts

Methods: Advantages - Disadvantages

EL:

electrical contact defects, cracks, cell crystalline defects, short circuited cells

PHL:

no electrical contacts needed all type of cracks detectable, fast method, cell crystalline defects, bottom of the cell visible

DLIT:

electrical contact defects, big crystalline defects, displays soldering faults, can differentiate between "hot" and "cold" contacts good resolution for shunts not all cracks detectable, electrical contacts needed, electrically not contacted regions often not measurable

can not differentiate between "hot" and "cold" electrical contacts, electrical contact defects between cell and busbar not detectable

can not detect cracks and small crystaline defects, slow method, reflection problems, electrical contact needed

2. Electro-optical Characterization on Module

c-Si

CdTe

Module Level: Electroluminescence

Module Level: DLIT-Amplitude

Module Level: DLIT: Phase

2. Electrical characterization vs. Degradation

Thin Film module affected by unstable bhavior under illumination

Why metastable behavior affects PV community?

Metastabilities in Thin-Film Technologies

- A non-ground state (e.g. triggered by light)
- Metastable states may relax, e.g. thermally driven
- Origins from defect structure in the device
- Study on device level

Metastabilities found in all thin-film devices:

a-Si, a-Si/µSi, CdTe, CIS, CIGS, CZTS, OPV, Perovskite

Degradation influences metastable bahavior

Pre-Treatment Procedure a-Si

Annealing of a-Si

Metastable Behavior a-Si before and after annealing

Degraded

Annealed

Metastable Behavior CdTe before and after degradation

Dependency on degradation CdTe

Metastable Behavior CIGS dependent on cell quality

CdS vs. ZnO buffer: CIGS

CdS: best

ZnO: best

Acknowledgement

- AIT Shokufeh Zamini, Ankit Mittal, Daniel Menz, Bernhard Kubicek, Gustav Ujavari, Roman Leidl
- University of Vienna Dr. Viktor Schlosser, Dr. Wolfgang Lang
- TU-Vienna Dr. Summhammer

AIT Austrian Institute of Technoloy

your ingenious partner

Marcus Rennhofer (marcus.rennhofer@ait.ac.at)